Preliminary verified, testing underway (2023)
Nellcor PM1000n Bedside Respiratory Patient Monitoring System
by COVIDIEN
Benchtop
Type2.2%
ArmsYES
Signal quality indicatorWaveform
indicatorOpenOx Performance
Root mean square error (Arms) is a common measure of pulse oximeter device performance that combines bias and precision. Here we report Arms based on Open Oximetry device testing using 2013 FDA Guidelines for 510k submissions and 2017 ISO 80601. Read more about quantification of oximeter performance on our FAQ.
*NOTE: performance is only reported here once we have tested the device in >10 study subjects (i.e. as required by 2013 FDA and 2017 ISO requirements). Performance may change significantly as we continue to perform testing in additional subjects and conditions. Please continue to check back as we update frequently. Click the device to see how details on how many subjects have been tested as well as details of skin color testing.
Arms 2.2%
Purchase Cost
Here we report retail purchase costs (US $) for buying the pulse oximeter, including one adult finger probe. Costs are obtained from one or multiple sources including manufacturers or online retail stores. Of note, some devices have special discount pricing for low and middle-income countries. The special prices are not accounted for in this report.
2000
Lifetime Cost
Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.
Lifetime Cost
Beta
COVIDIEN
Nellcor PM1000n Bedside Respiratory Patient Monitoring System
See detailsEstimated Lifetime Cost:
Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.
Estimated Lifetime Cost:
Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.
Adjust the assumptions below to estimate the 10-year lifetime cost for this device:
Purchase Cost
Probe Cost
Time to probe replacement
Time to processor replacement
Monthly power cost (e.g batteries)
Lifetime is assumed to be 10 years. Salvage cost at the end of 10 years is assumed to be zero for all devices. Cost of device maintenance or repair is not assumed to be zero. We assume probe and device replacement intervals based on evolving input from clinician collaborators around the world based on device type alone (i.e. fingertip, handheld, etc), though note these vary widely by setting and manufacturer. These intervals attempt to grossly account for wear and tear, damage or misplacement and theft.
Specification Overview
Manufacturer
Model
Nellcor PM1000n Bedside Respiratory Patient Monitoring System
Alias Rebranding
Some oximeters may be rebranded, relabeled and sold by multiple distributors under different names. We are attempting to compile 'aliases' for devices.
PM1000, Medtronic, NELLCOR PURITAN BENNETT, INC.
Type
We categorize devices as fingertip, handheld, benchtop, multimodal, phone-based or wearable.
Benchtop
Reflectance or Transmittance
Some devices may have capability to function as transmission and reflectance modes using different probe types. Read more about the difference between reflectance and transmittance devices in our FAQ.
Both
Patient population
This indicates the intended patient populations for the device (adult, pediatrics, neonates), as specified by our review of the manufacturers' published specifications. Use in certain patient populations may require procurement of a separate probe.
Adult, Pediatrics, Neonates
Where made
This indicates the location where the device is manufactured as stated by the manufacturer (or the stated location of the manufacturer). Please note, devices may contain components manufactured in different location.
China
Ingress Protection (IP)
"Ingress Protection" ratings define levels of sealing effectiveness of devices from foreign bodies (e.g. dust) and moisture. Read more at our FAQ.
IPX2
Cost
Here we report retail purchase costs (US $) for buying the pulse oximeter, including one adult finger probe. Costs are obtained from one or multiple sources including manufacturers or online retail stores. Of note, some devices have special discount pricing for low and middle-income countries. The special prices are not accounted for in this report.
$2000
Lifetime Cost
Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.
$2528.00
Features
Here we try to report device features such as signal quality indicator, waveform, carboxy-Hb, perfusion index and ability to measure Hb.
Extended skin pigmentation performance testing, Extended low perfusion performance testing
Standard Performance info
Producer claimed Arms (root mean square error) for SpO2 70-100%
1.1-2%
Independent Arms (root mean square error) for SpO2 70-100%
Root mean square error (Arms) is a common measure of pulse oximeter device performance that combines bias and precision. Here we report Arms based on Open Oximetry device testing using 2013 FDA Guidelines for 510k submissions and 2017 ISO 80601. Read more about quantification of oximeter performance on our FAQ.
*NOTE: performance is only reported here once we have tested the device in >10 study subjects (i.e. as required by 2013 FDA and 2017 ISO requirements). Performance may change significantly as we continue to perform testing in additional subjects and conditions. Please continue to check back as we update frequently. Click the device to see how details on how many subjects have been tested as well as details of skin color testing.
2.2%
Data independent Arms data collected
This is the date that the Open Oximetry collected data in the UCSF Hypoxia Lab data to 'verify' or 'dispute' device performance. If Arms data were obtained from a source other than the Hypoxia Lab, please review the date for that source. Of note, device performance may be specific to a model year (even if the model name has not changed).
09/18/2023
Source of independent Arms data
Root mean square error (Arms) is a common measure of pulse oximeter device performance. 'Arms' may be ascertained from manufacturers' published data, 510k reports, package inserts or primary data from testing conducted by the UCSF Hypoxia Lab. Devices independently tested by the Open Oximetry Project will be marked 'verified' or 'disputed' depending on study findings.
UCSF Hypoxia Lab
510k date
Date FDA 510k approved
03/05/2015
Extended Performance info
Peer reviewed Manuscripts
Here are select manuscripts published in the peer-reviewed literature.
Data published by manufacturer
We are working to gather device performance data published directly by manufacturers.
Extended skin color data
When available, here we show data on the forehead color for healthy volunteer subjects on which the device was tested. Each square represents a single study subject. The square's color is the RGB color derived from the L*a*b* color space using a Konica Minolta CM700d reflectance spectrophotometer. More info on skin color quantification.
When available, here we show data on the forehead color for healthy volunteer subjects on which the device was tested. Each square represents a single study subject. The square's color is the RGB color derived from the LAB color space using a Konica Minolta CM700d reflectance spectrophotometer.
Low perfusion performance data
We are working to gather data on device performance during varying conditions such as low perfusion. We are also working to standardize protocols for such testing. Read more on 'perfusion' in our FAQ.
Not Available
Raw PPG data
We are working to gather raw data for device performance to share for independent analysis. We expect to launch this feature later in 2023.
Not Available
In vitro (simulator) performance data
We are working on novel in vitro testing protocols for both commercially available devices (e.g. Fluke ProSim8) and novel in vitro devices. We expect to report data for this testing later in 2023.
Not Available
Real world clinical data
Here we link to studies conducted in the clinical settings
Not Available
You have additional questions?
Submit a question