Skip to content

Preliminary Failed (2016)

Starhealth SH-A3

by Star Health Medical

About this oximeter:

This device was tested by the Hypoxia Lab in 2016 in 10-12 study subjects and found to have performance that would not meet ISO or FDA standards or guidance.

Fingertip

Type
single-performance-icon

4.2%

Arms

OpenOx Performance

Root mean square error (ARMS) is a common measure of pulse oximeter device performance that combines bias and precision. Here we report Arms based on Open Oximetry device testing using 2013 FDA Guidelines for 510k submissions and 2017 ISO 80601, while also trying to account for expanded criteria to improve diversity of skin pigment in study cohorts (US FDA "Approach for Improving the Performance Evaluation of Pulse Oximeter Devices Taking Into Consideration Skin Pigmentation, Race and Ethnicity"). Read more about quantification of oximeter performance on our FAQ.

*NOTE: performance is only reported here once we have tested the device in ≥10 study subjects (i.e. as required by 2013 FDA and 2017 ISO requirements). Performance may change significantly as we continue to perform testing in additional subjects and conditions. Please continue to check back as we update frequently. Click the device to see details on how many subjects have been tested as well as details of skin color testing.

Arms 4.2%

Purchase Cost

Here we report retail purchase costs (USD) for buying the pulse oximeter, including one adult finger probe. Costs are obtained from one or multiple sources including manufacturers or online retail stores. Of note, some devices have special discount pricing for low and middle-income countries. The special prices are not accounted for in this report.

20

Lifetime Cost

Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: We make many assumptions!). Click the settings button next to the cost to see the formula and adjust these assumptions to your local data.

Specification Overview

Manufacturer

Star Health Medical

Model

Starhealth SH-A3

Type

We categorize devices as fingertip, handheld, tabletop, multiparameter, phone-based or wearable.

Fingertip

Reflectance or Transmittance

Some devices may have the capability to function with transmission or reflectance probes. Read more about the difference between reflectance and transmission devices in our FAQ.

Transmittance

Where made

This indicates the location where the device is manufactured as stated by the manufacturer (or the stated location of the manufacturer). Please note, devices may contain components manufactured in different location.

China

Cost

Here we report retail purchase costs (USD) for buying the pulse oximeter, including one adult finger probe. Costs are obtained from one or multiple sources including manufacturers or online retail stores. Of note, some devices have special discount pricing for low and middle-income countries. The special prices are not accounted for in this report.

$20

Lifetime Cost

Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: We make many assumptions!). Click the settings button next to the cost to see the formula and adjust these assumptions to your local data.

760.00

Features

Here we report device features such as signal quality indicator, waveform, carboxy-Hb, perfusion index and ability to measure Hb. These are based on review of manufacturers' manuals and may be incomplete.

Extended low perfusion performance testing

Standard Performance info

Manufacturer claimed Arms (root mean square error) for SpO2 70-100%

Here we report the root mean square error (ARMS) as provided in the manufacturer’s product manual or other literature, which may include data from the 510(k) submission.

No data

Independent Arms (root mean square error) for SpO2 70-100%

Root mean square error (ARMS) is a common measure of pulse oximeter device performance that combines bias and precision. Here we report Arms based on Open Oximetry device testing using 2013 FDA Guidelines for 510k submissions and 2017 ISO 80601, while also trying to account for expanded criteria to improve diversity of skin pigment in study cohorts (US FDA "Approach for Improving the Performance Evaluation of Pulse Oximeter Devices Taking Into Consideration Skin Pigmentation, Race and Ethnicity"). Read more about quantification of oximeter performance on our FAQ.

*NOTE: performance is only reported here once we have tested the device in ≥10 study subjects (i.e. as required by 2013 FDA and 2017 ISO requirements). Performance may change significantly as we continue to perform testing in additional subjects and conditions. Please continue to check back as we update frequently. Click the device to see details on how many subjects have been tested as well as details of skin color testing.

4.2%

Date independent Arms data collected

This is the most recent date that the Open Oximetry Project collected data in the UCSF Hypoxia Lab to assess this device's performance. If ARMS data were obtained from a source other than the Hypoxia Lab, please review the date for that source. Of note, device performance may be specific to a model year (even if the model name has not changed).

01/01/2016

Source of independent Arms data

Root mean square error (ARMS) is a common measure of pulse oximeter device performance. 'ARMS' may be ascertained from manufacturers' published data, 510k reports, package inserts or primary data from testing conducted by the UCSF Hypoxia Lab. Devices independently tested by the Open Oximetry Project will be marked 'verified' or 'failed' depending on study findings.

UCSF Hypoxia Lab

Extended Performance info

Peer reviewed Manuscripts

Here are select manuscripts published in the peer-reviewed literature.

Perfusion performance data

We collected the percent modulation of the infrared (IR) signal—often termed pulsatility amplitude or perfusion index (PI)—from our reference devices, Nellcor PM1000N and Masimo Rad-97. This measure serves as an indirect, albeit imperfect, surrogate for perfusion and signal strength.

This column provides insights into the pulsatility amplitude distribution of the cohort by reporting the median pulsatility amplitude and interquartile range (Q1–Q3). The median pulsatility amplitude represents the typical blood flow strength of the collected samples, while the interquartile range (Q1-Q3) shows the middle 50% of pulsatility amplitude values, giving an idea of how much variation exists around this typical flow level.

We report pulsatility amplitude from the Nellcor PM1000N for all devices, except for the Masimo Rad-97, which provides its own PI measurement. For consistency across devices, we applied a correction factor to the PM1000N pulsatility amplitude by dividing the values by 10, making them comparable to the pulsatility amplitude reported by other devices, such as Masimo.

Not Available

Raw PPG data

We are working to gather raw data for device performance to share for independent analysis. We expect to launch this feature soon.

Not Available

In vitro (simulator) performance data

We are working on novel in vitro testing protocols for both commercially available devices (e.g. Fluke ProSim8) and novel in vitro devices. We expect to report data for this testing soon.

Not Available

Real world clinical data

Here we link to studies conducted in the clinical settings.

Not Available

Submit a question