Unverified, testing underway (2024)

Zacurate 500C

by CMS

Click here to see more information.

Fingertip

Type

3.5%

Arms

YES

Signal quality indicator

Waveform

indicator

OpenOx Performance

Root mean square error (Arms) is a common measure of pulse oximeter device performance that combines bias and precision. Here we report Arms based on Open Oximetry device testing using 2013 FDA Guidelines for 510k submissions and 2017 ISO 80601. Read more about quantification of oximeter performance on our FAQ.

*NOTE: performance is only reported here once we have tested the device in >10 study subjects (i.e. as required by 2013 FDA and 2017 ISO requirements). Performance may change significantly as we continue to perform testing in additional subjects and conditions. Please continue to check back as we update frequently. Click the device to see how details on how many subjects have been tested as well as details of skin color testing.

Arms 3.5%

Purchase Cost

Here we report retail purchase costs (US $) for buying the pulse oximeter, including one adult finger probe. Costs are obtained from one or multiple sources including manufacturers or online retail stores. Of note, some devices have special discount pricing for low and middle-income countries. The special prices are not accounted for in this report.

23

Lifetime Cost

Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.

820.00

Lifetime Cost

Beta

CMS

Zacurate 500C

See details

Estimated Lifetime Cost:

Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.

820.00

Estimated Lifetime Cost:

Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.

820.00

Purchase Cost

US$

Time to processor replacement

Years

Monthly power cost (e.g batteries)

US$

Lifetime is assumed to be 10 years. Salvage cost at the end of 10 years is assumed to be zero for all devices. Cost of device maintenance or repair is not assumed to be zero. We assume probe and device replacement intervals based on evolving input from clinician collaborators around the world based on device type alone (i.e. fingertip, handheld, etc), though note these vary widely by setting and manufacturer. These intervals attempt to grossly account for wear and tear, damage or misplacement and theft.

Specification Overview

Manufacturer

CMS

Model

Zacurate 500C

Alias Rebranding

Some oximeters may be rebranded, relabeled and sold by multiple distributors under different names. We are attempting to compile 'aliases' for devices.

ANKOVO, SureLife Clearview

Type

We categorize devices as fingertip, handheld, benchtop, multimodal, phone-based or wearable.

Fingertip

Reflectance or Transmittance

Some devices may have capability to function as transmission and reflectance modes using different probe types. Read more about the difference between reflectance and transmittance devices in our FAQ.

Transmittance

Patient population

This indicates the intended patient populations for the device (adult, pediatrics, neonates), as specified by our review of the manufacturers' published specifications. Use in certain patient populations may require procurement of a separate probe.

Adult, Pediatrics

Where made

This indicates the location where the device is manufactured as stated by the manufacturer (or the stated location of the manufacturer). Please note, devices may contain components manufactured in different location.

China

Ingress Protection (IP)

"Ingress Protection" ratings define levels of sealing effectiveness of devices from foreign bodies (e.g. dust) and moisture. Read more at our FAQ.

IP22

Cost

Here we report retail purchase costs (US $) for buying the pulse oximeter, including one adult finger probe. Costs are obtained from one or multiple sources including manufacturers or online retail stores. Of note, some devices have special discount pricing for low and middle-income countries. The special prices are not accounted for in this report.

$23

Lifetime Cost

Here we estimate the 10-year lifetime cost of ownership for this type of pulse oximeter (Caution: we make many assumptions!). Click the settings button below to see the formula and adjust this assumptions to your local data.

$820.00

Features

Here we try to report device features such as signal quality indicator, waveform, carboxy-Hb, perfusion index and ability to measure Hb.

Extended skin pigmentation performance testing, Extended low perfusion performance testing

Standard Performance info

Producer claimed Arms (root mean square error) for SpO2 70-100%

1.1-2%

Independent Arms (root mean square error) for SpO2 70-100%

Root mean square error (Arms) is a common measure of pulse oximeter device performance that combines bias and precision. Here we report Arms based on Open Oximetry device testing using 2013 FDA Guidelines for 510k submissions and 2017 ISO 80601. Read more about quantification of oximeter performance on our FAQ.

*NOTE: performance is only reported here once we have tested the device in >10 study subjects (i.e. as required by 2013 FDA and 2017 ISO requirements). Performance may change significantly as we continue to perform testing in additional subjects and conditions. Please continue to check back as we update frequently. Click the device to see how details on how many subjects have been tested as well as details of skin color testing.

3.5%

Independent Arms Study Cohort Size

Currently, there is lack of consensus on optimal sample sizes for validation study cohorts. 2017 ISO and 2013 FDA documents stipulate at least 10 subjects, 15% of whom should be darkly pigmented.

52.0

% of study cohort with dark skin pigmentation

Currently, there is lack of consensus on optimal methods for characterizing skin pigment and optimal sample sizes for validation study cohorts. 2017 ISO and 2013 FDA documents stipulate at least 10 subjects, 15% of whom should be darkly pigmented. Here we define ‘darkly pigmented’ as Monk Skin Tone Scale HIJ and Individual Typology Angle <-30.

30.8%

Date independent Arms data collected

This is the date that the Open Oximetry collected data in the UCSF Hypoxia Lab data to 'verify' or 'dispute' device performance. If Arms data were obtained from a source other than the Hypoxia Lab, please review the date for that source. Of note, device performance may be specific to a model year (even if the model name has not changed).

05/31/2024

Source of independent Arms data

Root mean square error (Arms) is a common measure of pulse oximeter device performance. 'Arms' may be ascertained from manufacturers' published data, 510k reports, package inserts or primary data from testing conducted by the UCSF Hypoxia Lab. Devices independently tested by the Open Oximetry Project will be marked 'verified' or 'disputed' depending on study findings.

UCSF Hypoxia Lab

Extended Performance info

Peer reviewed Manuscripts

Here are select manuscripts published in the peer-reviewed literature.

The most recent testing conducted by the Hypoxia Lab in 2023 demonstrate an ARMS of 3.4%

According to the manufacturer, all regular Zacurate pulse oximeters are FDA cleared but do not have FDA certification since they are marketed for sports and aviation use.

Extended skin color data

When available, here we show data on the forehead color for healthy volunteer subjects on which the device was tested. Each square represents a single study subject. The square's color is the RGB color derived from the L*a*b* color space using a Konica Minolta CM700d reflectance spectrophotometer. More info on skin color quantification.

Here we show data on the forehead color for healthy volunteer subjects on which the device was tested. Each square represents a single study subject. The square's color is derived from the Monk skin tone color observed by the UCSF Hypoxia Lab clinical research coordinators.

Skin pigment bias for SpO2 70-85%

This number attempts to describe how much oximeter performance is impacted by skin pigment at low oxygen saturations. Differential bias is calculated to assess the variation in SpO2 bias across ITA and MST levels, where the SpO2 bias is the mean of the difference between SpO2 measured by the pulse oximeter and SaO2 measured in the blood by gold standard co-oximetry. Here, the differential bias is calculated as the maximum difference in mean SpO2 bias across ITA and MST levels in saturation range 70-85%.

0.11%

Skin pigment bias for SpO2 85-100%

This number attempts to describe how much oximeter performance is impacted by skin pigment at higher oxygen saturations. Differential bias is calculated to assess the variation in SpO2 bias across ITA and MST levels, where the SpO2 bias is the mean of the difference between SpO2 measured by the pulse oximeter and SaO2 measured in the blood by gold standard co-oximetry. Here, the differential bias is calculated as the maximum difference in mean SpO2 bias across ITA and MST levels in saturation range 85-100%.

1.01%

Bias by skin pigment

Here we illustrate the skin pigment bias in SpO2 readings across different saturation ranges (70-85% and 85-100%) for Monk skin tone groups ABCD, EFG, and HIJ. Each dot represents a single healthy volunteer subject tested with the device. The dot’s color is derived from the Monk skin tone color observed by the UCSF Hypoxia Lab clinical research coordinators.

Low perfusion performance data

We are working to gather data on device performance during varying conditions such as low perfusion. We are also working to standardize protocols for such testing. Read more on 'perfusion' in our FAQ.

Not Available

Raw PPG data

We are working to gather raw data for device performance to share for independent analysis. We expect to launch this feature later in 2023.

Not Available

In vitro (simulator) performance data

We are working on novel in vitro testing protocols for both commercially available devices (e.g. Fluke ProSim8) and novel in vitro devices. We expect to report data for this testing later in 2023.

Not Available

Real world clinical data

Here we link to studies conducted in the clinical settings

Not Available

Submit a question